



The 4:1 Input Voltage 250 Watt Single QMW DC/DC converter provides a precisely regulated dc output. The output voltage is fully isolated from the input, allowing the output to be positive or negative polarity and with various ground connections. The 250 Watt QMW meets the most rigorous performance standards in an industry standard footprint for mobile ( $12V_{IN}$ ), process control ( $24V_{IN}$ ), and military COTS ( $28V_{IN}$ ) applications.

The 4:1 Input Voltage 250 Watt QMW includes remote ON/OFF. Threaded through holes are provided to allow easy mounting or addition of a heatsink for extended temperature operation.

The converters high efficiency and high power density are accomplished through use of high-efficiency synchronous rectification technology, advanced electronic circuit, packaging and thermal design thus resulting in a high reliability product. Converter operates at a fixed frequency and follows conservative component de-rating guidelines.

Product is designed and manufactured in the USA.





#### **Features**

- 4:1 Input voltage range
- High power density
- Small size 1.54" x 2.39" x 0.52"
- Efficiency up to 93%
- Excellent thermal performance with metal case
- Over-Current and Short Circuit Protection
- Over-Temperature protection
- Auto-restart
- Monotonic startup
- Constant frequency
- Remote ON/OFF
- · Good shock and vibration damping
- RoHS Compliant
- UL60950 Approved

| Model              | Input Range<br>VDC |     | Vout<br>VDC | lout<br>ADC |
|--------------------|--------------------|-----|-------------|-------------|
|                    | Min                | Max | VDC         | ADC         |
| 24S12.20QMW (ROHS) | 9                  | 36  | 12          | 20.5        |

- 1. Designed to meet MIL-STD-810G for functional shock and vibration. The unit must be properly secured to the interface medium (PCB/Chassis) by use of the threaded inserts of the unit.
- 2. A thermal management device, such as a heatsink, is required to ensure proper operation of this device. The thermal management medium is required to maintain baseplate temperature below value provided in derating quideline.







Electrical Specifications: Conditions:  $T_A = 25^{\circ}\text{C}$ , airflow = 300 LFM (1.5m/s),  $V_{IN} = 24\text{VDC}$ , unless otherwise specified. Specifications subject to change without notice.

| D-m-m-4-m                               | 24S12.20QMW                                                                                                                                        | B.#! | <b>T</b> | NA   | 1121  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|-------|
| Parameter                               | Notes                                                                                                                                              | Min  | Тур      | Max  | Units |
| Absolute Maximum Ratings                |                                                                                                                                                    |      | •        |      |       |
| Input Voltage                           | Continuous                                                                                                                                         | 0    |          | 40   | V     |
|                                         | Transient (100ms)                                                                                                                                  |      |          | 50   | V     |
| Operating Temperature <sup>1)</sup>     | Baseplate (100% load)                                                                                                                              | -40  |          | 105  | °C    |
| Storage Temperature                     |                                                                                                                                                    | -55  |          | 125  | °C    |
| Isolation Characteristics and Safety    |                                                                                                                                                    |      |          |      |       |
| Isolation Voltage                       | Input to Output                                                                                                                                    | 2250 |          |      | V     |
|                                         | Input to Baseplate & Output to Baseplate                                                                                                           | 1500 |          |      | V     |
| Isolation Capacitance                   |                                                                                                                                                    |      | 4500     |      | pF    |
| Isolation Resistance                    |                                                                                                                                                    | 10   | 20       |      | ΜΩ    |
| Insulation Safety Rating                |                                                                                                                                                    |      | Basic    |      |       |
|                                         | Designed to meet UL/cUL 60950, IEC/EN 60950-1                                                                                                      |      |          |      |       |
| Feature Characteristics                 |                                                                                                                                                    |      |          |      |       |
| Fixed Switching Frequency               |                                                                                                                                                    |      | 275      |      | kHz   |
| Remote Sense Compensation               | This function is not provided                                                                                                                      |      | N/A      |      | %     |
| Output Overvoltage Protection           | Non-latching                                                                                                                                       | 110  | 115      | 120  | %     |
| Over Temperature Shutdown (Baseplate)   | Non-latching                                                                                                                                       |      | 115      | 125  | °C    |
| Auto-Restart Period                     | Applies to all protection features                                                                                                                 | 450  | 500      | 550  | ms    |
| Turn-On Time from V <sub>IN</sub>       | Time from UVLO to V <sub>O</sub> =90% V <sub>OUT</sub> (NOM)                                                                                       | 7    | 11       | 15   | ms    |
| Turn-On time from ON/OFF Control        | Time from ON to V <sub>O</sub> =90% V <sub>OUT</sub> (NOM) Resistive load                                                                          | 13   | 17       | 21   | ms    |
| Rise Time                               | VOUT from 10% to 90%                                                                                                                               | 3    | 5.5      | 7    | ms    |
| ON/OFF Control – Positive Logic         |                                                                                                                                                    | •    | •        |      | •     |
| On State                                | Pin open = ON or external voltage applied                                                                                                          | 2    |          | 5.5  | V     |
| Current Control                         | Leakage current                                                                                                                                    |      |          | 0.16 | mA    |
| OFF State                               |                                                                                                                                                    | 0    |          | 0.8  | V     |
| Control Current                         | Sinking                                                                                                                                            |      |          | 0.36 | mA    |
| Thermal Characteristics                 |                                                                                                                                                    |      |          |      |       |
| Thermal resistance Baseplate to Ambient | Unit mounted horizontally, using Calex Brick Test Fixture (bottom side of fixture covered to prevent airflow across unit), No Heatsink & Fan used. |      | 6.2      |      | °C/W  |

See Fig. A for derating guideline







Electrical Specifications (Continued): Conditions:  $T_A = 25^{\circ}C$ , airflow = 300 LFM (1.5m/s),  $V_{IN} = 24VDC$ , unless otherwise specified. Specifications subject to change without notice

|                                              | 24S12.20QMW                                |              |       |       |       |                     |
|----------------------------------------------|--------------------------------------------|--------------|-------|-------|-------|---------------------|
| Parameter                                    | Notes                                      |              | Min   | Тур   | Max   | Units               |
| Input Characteristics                        |                                            |              |       |       |       |                     |
| Operating Input Voltage Range                |                                            |              | 9     | 24    | 36    | V                   |
| Input Under Voltage Lockout                  | Non-latching                               |              | •     |       | •     | •                   |
| Turn-on Threshold                            |                                            |              | 8.3   | 8.6   | 8.9   | V                   |
| Turn-off Threshold                           |                                            |              | 7.6   | 7.9   | 8.2   | V                   |
| Lockout Hysteresis Voltage                   |                                            |              | 0.3   | 0.6   | 0.9   | V                   |
| Maximum Input Current                        | V <sub>IN</sub> = 9V, lout=16.4A           |              |       |       | 26    | Α                   |
|                                              | V <sub>IN</sub> = 24V, lout=20.5A          |              |       |       | 12    | Α                   |
|                                              | V <sub>IN</sub> = 24V, Output Shorted      |              |       | 0.09  |       | A <sub>RMS</sub>    |
| Input Stand-by Current                       | Converter Disabled                         |              |       | 17    | 20    | mA                  |
| Input Current @ No Load                      | Converter Enabled                          |              |       | 234   |       | mA                  |
| Minimum Input Capacitance (external)         | ESR < 0.1 Ω                                |              | 470   |       |       | μF                  |
| Inrush Transient                             | Vin = 36V (0.4V/µs) no input extern        | al capacitor |       | 0.05  |       | A <sup>2</sup> s    |
| Input Terminal Ripple Current, $i_{C}$       | 25 MHz bandwidth, 100% Load (Fig           | g. 2)        |       | 4.85  |       | A <sub>RMS</sub>    |
| Output Characteristics                       |                                            |              |       |       |       |                     |
| Output Voltage Range                         |                                            |              | 11.64 | 12.00 | 12.36 | V                   |
| Output Voltage Set Point Accuracy            | (50% Rated Load)                           |              | 11.88 | 12.00 | 12.12 | V                   |
| Output Regulation                            |                                            |              |       |       |       |                     |
| Over Line                                    | V <sub>IN</sub> = 9V to 36V                |              |       | 0.2   | 1     | %                   |
| Over Load                                    | V <sub>IN</sub> = 24V, Load 0% to 100%     |              |       | 0.2   | 1     | %                   |
| Temperature Coefficient                      |                                            |              |       | 0.02  | 0.03  | %/°C                |
| Over Voltage Protection                      |                                            |              | 13.2  |       | 14.4  | V                   |
| Output Ripple and Noise – 20 MHz bandwidth   | (Fig. 3) 100% Load                         |              |       | 50    |       | mV <sub>PK-Pk</sub> |
|                                              |                                            |              |       | 15    |       | $mV_{\text{RMS}}$   |
| External Load Capacitance                    | Full Load (resistive)                      | $C_{EXT}$    | 330   |       | 2200  | μF                  |
|                                              | -40 °C < Ta < +105 °C                      | ESR          | 10    |       | 100   | mΩ                  |
| Output Current Range (See Fig. B)            | 12V ≤ Vin ≤ 36V                            |              | 0     |       | 20.5  | Α                   |
|                                              | Vin = 9V                                   |              | 0     |       | 16.4  | Α                   |
| Current Limit Inception                      |                                            |              |       | 26    |       | Α                   |
| RMS Short-Circuit Current                    | Non-latching, Continuous                   |              |       | 0.7   |       | $A_{RMS}$           |
| Dynamic Response                             |                                            |              |       |       |       |                     |
| Load change 50% - 75% - 50%, di/dt = 1A/µs   | $C_o$ = 330 μF/75m $\Omega$ + 1 μF ceramic |              |       | ± 250 |       | mV                  |
| Load change 50% - 100%, - 50%, di/dt = 1A/μs | $C_o$ = 330 μF/75m $\Omega$ + 1 μF ceramic |              |       | ± 400 |       | mV                  |
| Setting Time to 1% of V <sub>OUT</sub>       |                                            |              |       | 200   |       | μs                  |
| Efficiency                                   |                                            |              |       |       |       |                     |
| 100% Load                                    | V <sub>IN</sub> = 24 V                     |              |       | 92.4  |       | %                   |
|                                              | V <sub>IN</sub> = 12 V                     |              |       | 92    |       | %                   |
| 50% Load                                     | V <sub>IN</sub> = 24 V                     |              |       | 92.6  |       | %                   |
|                                              | V <sub>IN</sub> = 12 V                     |              |       | 93.7  |       | %                   |







Environmental and Mechanical Specifications: Specifications subject to change without notice.

| Parameter                     | Notes                                                                                               | Min                            | Тур                     | Max         | Units  |
|-------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|-------------|--------|
| Environmental                 |                                                                                                     | •                              | •                       | •           | •      |
| Operating Humidity            | Non-condensing                                                                                      |                                |                         | 95          | %      |
| Storage Humidity              | Non-condensing                                                                                      |                                |                         | 95          | %      |
| ROHS Compliance <sup>1</sup>  | See Calex Website <a href="http://www.calex.com/RobStatement">http://www.calex.com/RobStatement</a> | IS.html for the                | complete R              | oHS Comp    | liance |
| Shock and Vibration           | Designed to meet MIL-STD-810G for function                                                          | al shock and vi                | bration                 |             |        |
| Water Washability             | Not recommended for water wash process. Co                                                          | ontact the facto               | ory for more            | information | ۱.     |
| Mechanical                    |                                                                                                     |                                |                         |             |        |
| Weight                        |                                                                                                     |                                | 2.4                     |             | Ounces |
|                               |                                                                                                     |                                | 68                      |             | Grams  |
| PCB                           |                                                                                                     |                                |                         | _           |        |
| Operating Temperature         |                                                                                                     |                                |                         | 130         | °C     |
| Tg                            |                                                                                                     | 170                            |                         |             | °C     |
|                               | Pins 1 ,2 and 3                                                                                     | 0.038                          | 0.04                    | 0.042       | Inches |
| Through Hole Pin Diameters    | 1 1115 1 ,2 dilu 5                                                                                  | 0.965                          | 1.016                   | 1.067       | mm     |
| Through Flore Fin Diameters   | Pins 4 and 5                                                                                        | 0.058                          | 0.06                    | 0.062       | Inches |
|                               | Tills 4 alla 3                                                                                      | 1.4732                         | 1.524                   | 1.575       | mm     |
| Through Hole Pin Material     | All Pins                                                                                            | Brass Alloy TB3 or "Eco Brass" |                         |             | rass"  |
| Through Hole Pin Finish       | All pins                                                                                            | 10µ" Gold over Nickel          |                         |             |        |
| Case Dimensions               |                                                                                                     | 1.5                            | 1.54 x 2.39 x 0.52      |             |        |
| Cade Differences              |                                                                                                     | 39.116                         | 39.116 x 60.706 x 13.21 |             |        |
| Case Material                 | Plastic: Vectra LCP FIT30: ½ - 16 EDM Finish                                                        | 1                              |                         |             |        |
|                               | Material                                                                                            | Aluminum                       |                         |             |        |
| Baseplate                     | Flatness                                                                                            |                                | 0.008                   |             | Inches |
|                               | T latitose                                                                                          |                                | 0.20                    |             | mm     |
| Reliability                   |                                                                                                     |                                |                         |             |        |
| MTBF                          | Telcordia SR-332, Method 1 Case 1 50% electrical stress, 40°C components                            |                                |                         | MHrs        |        |
| Agency Approvals              | UL60950 Approved                                                                                    |                                |                         |             |        |
| EMI and Regulatory Compliance |                                                                                                     |                                |                         |             |        |
| Conducted Emissions           | MIL-STD-461F CE102 with external EMI filter                                                         | network (see F                 | igs, 12 and             | l 13)       |        |
|                               | I .                                                                                                 |                                |                         | •           |        |

#### Additional Notes:

1. the RoHS marking is as follows:



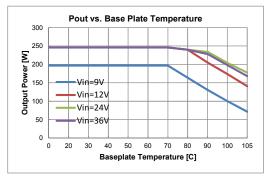



Figure A: Power derating as function of baseplate temperature.

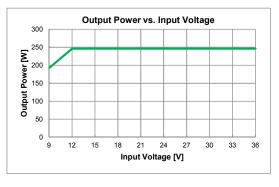



Figure B: Output Power as function of input voltage



### Operations:

#### **Input and Output Capacitance**

In many applications, the inductance associated with the distribution from the power source to the input of the converter can affect the stability of the converter. This becomes of great consideration for input voltage at 12V or below. In order to enable proper operation of the converter, in particular during load transients, an additional input capacitor is required. Minimum required input capacitance, mounted close to the input pins, is  $470\mu F$  with ESR < 0.1  $\Omega$ . Since inductance of the input power cables could have significant voltage drop due to rate of change of input current di(in)/dt during transient load operation an external capacitance on the output of the converter is required to reduce di(in)/dt. It is required to use at least 330 $\mu$ F (ESR < 0.1 $\Omega$ ) on the output. Another constraint is minimum rms current rating of the input and output capacitors which is application dependent. One component of input rms current handled by input capacitor is high frequency component at switching frequency of the converter (typ. 275kHz) and is specified under "Input terminal ripple current" ic. Typical value at full rated load and 24  $V_{\text{IN}}$  is provided in Section "Characteristic Waveforms" and is in range of 4A - 5A. Second component of the ripple current is due to reflected step load current on the input of the converter. Similar consideration needs to be taken into account for output capacitor and in particular step load ripple current component. Consult the factory for further application guidelines.

Additionally, for EMI conducted measurement it is necessary to use  $5\mu H$  LISNs instead of typical  $50\mu H$  LISNs.

#### ON/OFF (Pin 2)

The ON/OFF pin is used to turn the power converter on or off remotely via a system signal and has positive logic. A typical connection for remote ON/OFF function is shown in Fig. 1.

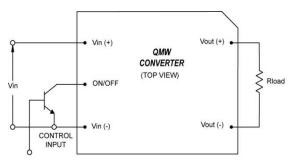



Fig 1: Circuit configuration for ON/OFF function.





The positive logic version turns on when the ON/OFF pin is at logic high and turns off when at logic low. The converter is on when the ON/OFF pin is either left open or external voltage not more than 5.5V is applied between ON/OFF pin and -INPUT pin. See the Electrical Specifications for logic high/low definitions.

The ON/OFF pin is internally pulled up to typically 4.5V via resistor and connected to internal logic circuit via RC circuit in order to filter out noise that may occur on the ON/OFF pin. A properly de-bounced mechanical switch, open-collector transistor, or FET can be used to drive the input of the ON/OFF pin. The device must be capable of sinking up to 0.36mA at a low level voltage of  $\leq$  0.8V. During logic high, the typical maximum voltage at ON/OFF pin (generated by the converter) is 4.5V, and the maximum allowable leakage current is 160µA. If not using the remote on/off feature leave the ON/OFF pin open.

TTL Logic Level - The range between 0.81V as maximum turn off voltage and 2V as minimum turn on voltage is considered the dead-band. Operation in the dead-band is not recommended.

External voltage for ON/OFF control should not be applied when there is no input power voltage applied to the converter.

#### **Protection Features:**

#### Input Undervoltage lockout (UVLO)

Input undervoltage lockout is standard with this converter. The converter will shut down when the input voltage drops below a pre-determined voltage.

The input voltage must be typically above 8.5V for the converter to turn on. Once the converter has been turned on, it will shut off when the input voltage drops typically below 8V.

#### **Output Overcurrent Protection (OCP)**

The converter is protected against overcurrent or short circuit conditions. At slight overload conditions cycle-by-cycle mode activates then transfers to hiccup mode at more severe overloading conditions.

Once the converter has shut down, it will attempt to restart nominally every 500msec with a typical 3% duty cycle. The attempted restart will continue indefinitely until the overload or short circuit conditions are removed. Once the output current is brought back into its specified range, the converter automatically exits the hiccup mode and continues normal operation.



#### **Output Overvoltage Protection (OVP)**

The converter will shut down if the output voltage across  $V_{\text{OUT}}$  (+) (Pin 5) and  $V_{\text{OUT}}$  (-) (Pin 4) exceeds the threshold of the OVP circuitry. The OVP circuitry contains its own reference, independent of the output voltage regulation loop. Once the converter has shut down, it will attempt to restart every 500 msec until the OVP condition is removed.

#### **Over Temperature Protection (OTP)**

The QMW converter has non-latching over temperature protection. It will shut down and disable the output if temperature at the center of the base plate exceeds a threshold of 115°C (typical).

The converter will automatically restart when the base temperature has decreased by approximately 10°C.

#### Safety Requirements

Basic Insulation is provided between input and the output.

The converters have no internal fuse. To comply with safety agencies requirements, a fast-acting or time-delay fuse is to be provided in the unearthed lead.

Recommended fuse values are:

- a) 34A for  $9V < V_{IN} < 18V$
- a)  $17A \text{ for } 18V < V_{IN} < 36V$

#### **Electromagnetic Compatibility (EMC)**

EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC characteristics of board mounted component dc-dc converters exist.

With the addition of a single stage external filter, the QMW converter will pass the requirements of MIL-STD-461F CE102 Base Curve for conducted emissions.

## Absence of the Remote Sense Pins and Trim Up/Down Feature

Customers should be aware that QMW converters do not have a Remote Sense feature and Output Voltage Trim Up/Down feature. Care should be taken to minimize voltage drop on the user's motherboard.

Non-standard output voltages are available. Please contact the factory for additional information.



#### **Thermal Consideration**

The QMW converter can operate in a variety of thermal environments. However, in order to ensure reliable operation of the converter, sufficient cooling should be provided. The QMW converter is encapsulated in plastic case with metal baseplate on the top. In order to improve thermal performance, power components inside the unit are thermally coupled to the baseplate. In addition, thermal design of the converter is enhanced by use of input and out pins as heat transfer elements. Heat is removed from the converter by conduction, convection and radiation.

There are several factors such as ambient temperature, airflow, converter power dissipation, converter orientation how converter is mounted as well as the need for increased reliability that need to be taken into account in order to achieve required performance. It is highly recommended to measure temperature in the middle of the baseplate in particular application to ensure that proper cooling of the convert is provided.

A reduction in the operating temperature of the converter will result in an increased reliability.

#### **Thermal Derating**

There are two most common applications: 1) the QMW converter is thermally attached to a cold plate inside chassis without any forced internal air circulation; 2) the QMW converter is mounted in an open chassis on system board with forced airflow with or without an additional heatsink attached to the baseplate of the QMW converter.

The best thermal results are achieved in application 1) since the converter is cooled entirely by conduction of heat from the top surface of the converter to a cold plate and temperature of the components is determined by the temperature of the cold plate. There is also some additional heat removal through the converters pins to the It is highly metal layers in the system board. recommended to solder pins to the system board rather than using receptacles. Maximum Power derating vs. base plate temperature is shown in Fig. A. Note that values of available output power for given base plate temperature in Fig A can vary between 5% -10% from sample to sample. Operating converter at the limits provided in Fig.A for prolonged time will affect reliability.



#### **Soldering Guidelines**

The ROHS-compliant through hole QMW converter uses Sn/Ag/Cub-free solder and ROHS compliant components. They are designed to be processed through wave soldering machines. The pins are 100% matte tin over nickel plated and compatible with both Pb and Pb-free wave soldering processes. It is recommended to follow specifications below when installing and soldering QMW converter. Exceeding these specifications may cause damage to the QMW converter.

| Wave Solder Guideline for Sn/Ag/Cu based solders |           |  |
|--------------------------------------------------|-----------|--|
| Maximum Preheat Temperature 115°C                |           |  |
| Maximum Pot Temperature 270°C                    |           |  |
| Maximum Solder Dwell Time                        | 7 seconds |  |

| Wave Solder Guideline for SN/Pb based solders |  |  |
|-----------------------------------------------|--|--|
| Maximum Preheat Temperature 105°C             |  |  |
| Maximum Pot Temperature 250°C                 |  |  |
| Maximum Solder Dwell Time 6 seconds           |  |  |

QMW converters are not recommended for water wash process. Contact the factory for additional information if water wash is necessary.



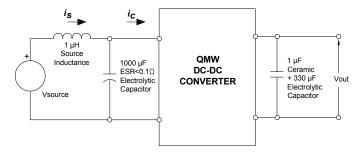
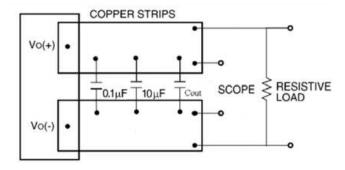
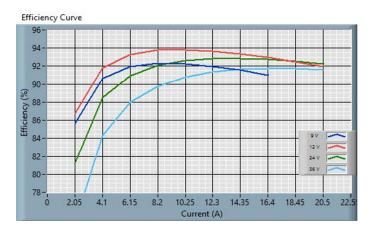



Fig. 2: Test setup for measuring input reflected ripple currents  $i_{\rm C}$  and  $i_{\rm S}$ .





Fig. 3: Test setup for measuring output voltage ripple, startup and step load transient waveforms.







#### **Characteristic Curves – Efficiency and Power Dissipation**



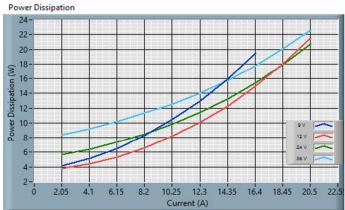



Fig. 4: Efficiency Curve

Fig. 5: Power Dissipation







#### **Characteristic Waveforms**

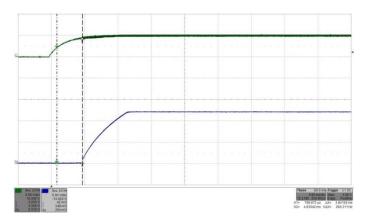



Fig. 6: Turn-on by ON/OFF transient (with  $V_{\text{IN}}$  applied) at full rated load current (resistive) at  $V_{\text{IN}}$  = 24V. Top trace (C1): ON/OFF signal (5V/div.). Bottom trace (C4): Output voltage (5 V/div.). Time 5 ms/div.

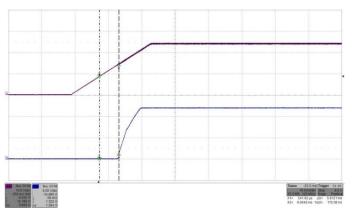



Fig. 7: Turn-on by  $V_{\text{IN}}$  transient (ON/OFF high) at full rated load current (resistive) at  $V_{\text{IN}}$  = 24V. Top trace (C2): Input voltage  $V_{\text{IN}}$  (10 V/div.). Bottom trace (C4): Output voltage (5 V/div.). Time 10 ms/div.

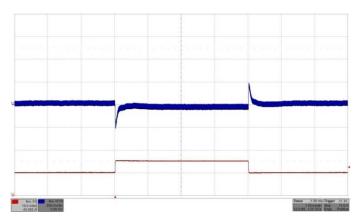



Fig. 8: Output voltage response to load current step change 50% - 75% - 50% (10A – 15A – 10A) with di/dt = 1A/ $\mu$ s at  $V_{IN}$  = 24V. Top trace (C4): Output voltage (200 mV/div.). Bottom trace (C3): Load current (10A/div.).  $C_0$  330 $\mu$ F/75m $\Omega$ . Time: 1ms/div.

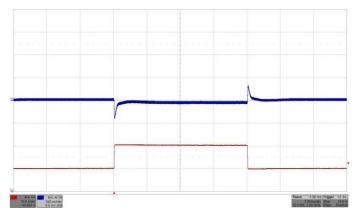



Fig. 9: Output voltage response to load current step change 50% - 100% - 50% (10A - 20A - 10A) with di/dt = 1A/ $\mu$ s at V<sub>IN</sub> = 24V. Top trace (C4): Output voltage (500 mV/div.). Bottom trace (C3): Load current (10A/div.).  $C_{\rm O}$  330 $\mu$ F/75m $\Omega$ . Time: 1ms/div.

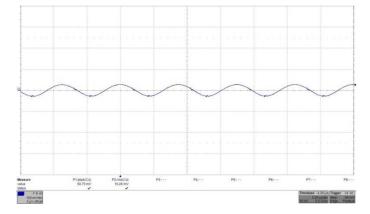



Fig. 10: Output voltage ripple (100mv/div.) at full rated load at  $V_{\text{IN}}$  = 24V.  $C_{\text{O}}$  330µF/75m $\Omega$ . Time: 2µs/div.

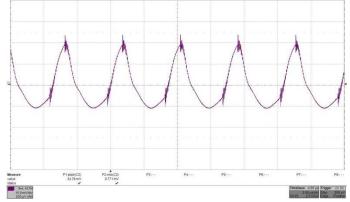
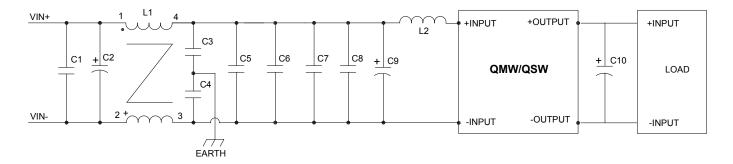


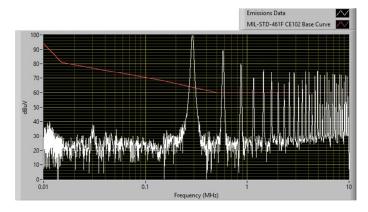

Fig. 11: Input reflected ripple current,  $i_c$  (10A/div), measured at input terminals at full rated load current at  $V_{\rm IN}$  = 24V. Refer to Fig. 2 for test setup. Time: 2  $\mu$ s/div. RMS input ripple current is 4.85A.

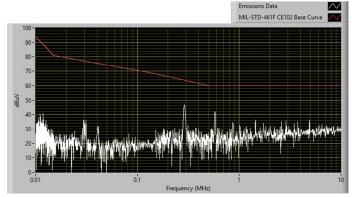







#### **EMC Consideration:**


The filter schematic for suggested input filter configuration as tested to meet the conducted emission limits of MIL-STD-461F CE102 Base Curve is shown in Fig. 12. The plots of conducted EMI spectrum are shown in Fig 13.


Note: Customer is ultimately responsible for the proper selection, component rating and verification of the suggested parts based on the end application.



| Comp. Des.         | Description                                                                                                |  |
|--------------------|------------------------------------------------------------------------------------------------------------|--|
| C1, C5, C6, C7, C8 | 10μF/1210/X7R/50V Ceramic Capacitor                                                                        |  |
| C2                 | 220μF/50V Electrolytic Capacitor (Vishay MAL214699106E3 or equivalent)                                     |  |
| C3, C4             | 4.7nF/1206/X7R/1500V Ceramic Capacitor                                                                     |  |
| C9, C10            | 330µF/50V Electrolytic Capacitor (Vishay MAL214699107E3 or equivalent)                                     |  |
| L1                 | $300\mu$ H, CM Choke (6 turns on toroid 22.1mm x 13.7mm x 7.92mm) $L_{lkg}$ = 1.2μH, $R_{dc}$ =2m $\Omega$ |  |
| L2                 | 0.22uH/32A inductor (IHLP3232CZERR22M01 – Vishay)                                                          |  |

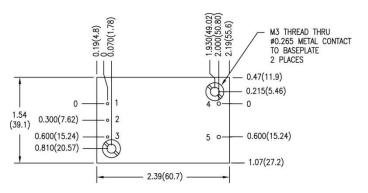
Fig.12: Typical input EMI filter circuit to attenuate conducted emissions per MIL-STD-461F CE102 Base Curve.

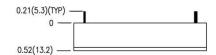




a) Without input filter.  $C9 = 330 \mu F/50 V$ .

b) With input filter from Fig. 12.


Fig. 13: Input conducted emissions measurement (Typ.) of 24S12.20QMW (ROHS)








### **Mechanical Specification:**





#### Notes:

Unless otherwise specified:

All dimensions are in inches [millimeters]

Tolerances: x.xx in. ±0.02 in [x.x mm ±0.5mm]

x.xxx in. ±0.010 in [x.xx mm ±0.25mm]

Torque fasteners into threaded mounting inserts at 10in.lbs. or less. Greater torque may result in damage to unit and void the warranty.

#### **Input Output Connections:**

| Pin | Name    | Function                                                                                 |
|-----|---------|------------------------------------------------------------------------------------------|
| 1   | -INPUT  | Negative input voltage                                                                   |
| 2   | ON/OFF  | TTL input with internal pull up, referenced to –INPUT, used to turn converter on and off |
| 3   | +INPUT  | Positive input voltage                                                                   |
| 4   | -OUTPUT | Negative output voltage                                                                  |
| 5   | +OUTPUT | Positive output voltage                                                                  |

#### Notes:

1) Pinout is inconsistent between manufacturers of the quarter brick converters. Follow the table above.

