

ARTESYN CSU2400AT SERIES

12.2V Distributed Power System

Advanced Energy's Artesyn CSU front end series is designed to provide a flexible power conversion solution for compute, storage, and networking equipment in the common redundant power supply (CRPS) form factor. This series of AC-DC products is housed in the industry standard 1U x 73.5 mm x 185 mm CRPS form factor. Featuring a power rating of 2400 W, the series can cover power hungry applications where there are space constraints.

AT A GLANCE

Front-end Bulk Power

Total Output Power

2400 W

Input Voltage

180 to 264 VAC 180 to 336 VDC

SPECIAL FEATURES

- Ultra-high density
- 1U power supply
- Active power factor correction
- EN61000-3-2 Harmonic compliance
- Inrush current control
- 80PLUS® Titanium efficiency
- N+N, N+1 redundant
- Hot-pluggable
- Active current sharing
- PMBus® compliant
- Closed loop throttle
- Cold redundancy
- Two-year warranty

COMPLIANCE

- Conducted/Radiated EMI Class A
- IFC 60950
- IEC/EN/UL 62368

SAFETY

- UL/cUL/CSA
- Demko, TUV + CB Report
- CE (LVD + RoHS)
- UKCA Mark
- KC (Safety + EMC)
- EAC
- BIS
- CCC, CQC
- BSMI

TARGET APPLICATIONS

- Server and Storage
- Networking

ELECTRICAL SPECIFICATIONS

Input						
Input range and output power	180 to 264 VAC		2400 W			
input range and output power	180 to 336 VDC	;	2400 W			
Frequency	47 to 63 Hz	47 to 63 Hz				
Efficiency	96.0% peak at h	96.0% peak at half load with 230 VAC input, titanium efficiency rating				
Max input current	15 A at 180 VAC	C input				
Inrush current	35 Apk, cold sta	art				
Conducted EMI	Class A, EN 550)32, FCC CFR 4	7 Part 15 Subpart	B with 6 dB mar	rgin	
Radiated EMI	Class A, EN 550	Class A, EN 55032, FCC CFR 47 Part 15 Subpart B with 6 dB margin				
Power factor	> 0.9 beginning	> 0.9 beginning at 10% load, > 0.99 at full load				
Hold-up time	16 ms minimum	16 ms minimum at 60% load, 11 ms minimum at full load				
Leakage current	< 0.583 mA	< 0.583 mA				
Output						
		Main DC Output		Standby DC Output		
	MIN	NOM	MAX	MIN	NOM	MAX
Nominal setting	-0.2%	12.2 V	+0.2%	-2.5%	12.0 V	+2.5%
Total output regulation range	-5%	-	+5%	-5%	-	+5%
Dynamic load regulation range	-5%	-	+5%	-5%	-	+5%
Output ripple	-	-	1%	-	-	1%
Output current ²	1.0 A ¹	-	196.7 A	0	-	3.5 A
Current sharing		Within a fixed error of ±3% of the full road rating from 25% load to full load		1		
Capacitive loading	2,000 μF³	-	70,000 μF	47 μF	-	3,100 µF

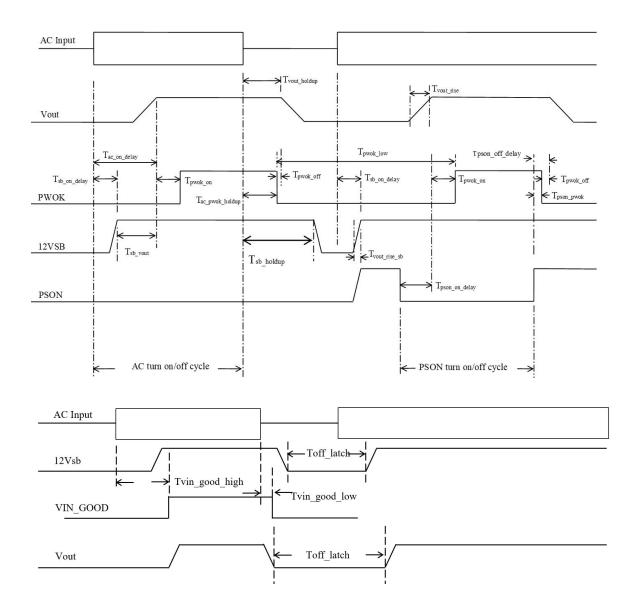
^{1.} Minimum current for transient load response testing only. Unit is designed to operate and be within output regulation range at zero load.

ORDERING INFORMATION

Model Number	Descrption	Out	puts	Airflow Direction
CSU2400AT-3-100	1U x 73.5 x 185mm 2400W, Titannium efficiency, C20	12.2 V/196.7 A	12.0 VSB/3.5 A	Forward

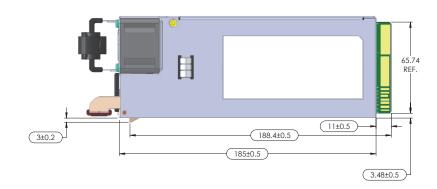
^{2.} Support 224 A peak current for 20 s, 268.6 A peak current for 10 ms, 283 A for 100 $\mu s.$

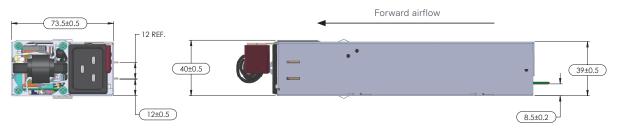
Minimum capacitance for cold redundancy and dynamic load tests.


^{4.} Minimum capacitance to support peak current.

ELECTRICAL SPECIFICATIONS

Timing Specification				
Item	Description	Min	Max	Unit
Tvout_rise	Output voltage rise time for 12 V from 10% to within regulation limits. The default is 25 ms, and may be tested with resistive load. The default rise time setting shall correspond to a maximum of 0.5 V/ms.	10	70	ms
Tvout_rise_sb	Output voltage rise time for 12 VSB from 10% to within regulation limits.	10	25	ms
Toff_latch	This is the time the PSU must stay off when being powered off with loss of AC input. Both outputs must meet this OFF time; 1) whenever PWOK is de-asserted for the 12 V main output; 2) whenever the 12 VSB output drops below regulation limits.	500	-	ms
Tsb_on_delay	Delay from AC being applied to 12 VSB being within regulation.	-	1500	ms
Tvin_good_high	Delay from input being applied to VIN_GOOD assertion.	-	1800	ms
Tac_on_delay	Delay from AC being applied to all output voltages being within regulation.	-	3000	ms
Tvout_holdup	Time main output voltage stays within load regulation range after loss of AC.	11	-	ms
Tac_pwok_holdup	Delay from loss of AC to de-assertion of PWOK.	10	-	ms
Tvin_good_low	Delay from loss of AC to de-assertion of VIN_GOOD.	-	3	ms
Tpson_off_delay	Delay from PSON# de-asserted to power supply turning off.	-	5	ms
Tpson_on_delay	Delay from PSON# active to output voltages within regulation limits.	5	400	ms
Tpson_pwok	Delay from PSON# deactivate to PWOK being de-asserted.	-	5	ms
Tpwok_on	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	500	ms
Tpwok_off	Delay from PWOK de-asserted to output voltages dropping out of regulation limits. This timing is configurable by the system from 1 ms to 4 ms.	1	_	ms
Tpwok_low	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.	100	-	ms
Tsb_vout	Delay from 12 VSB being in regulation to main output being in regulation at AC turn on.	50	1500	ms
Tvsb_holdup	Time the 12 VSB output voltage stays within regulation after loss of AC. Measured at 100% total power, with the standby output loaded at 1.75 A	70	-	ms


TIMING DIAGRAM



Note: The PSU may be configured to meet Tpwok_off of 2.5 ms at 107 A before the output drops below 10.8 V, with Tvout_hold-up still at a minimum of 11 ms.

MECHANICAL OUTLINE

Unit: mm

ENVIRONMENTAL SPECIFICATIONS

Operating temperature	-5 to 55°C full rated power. Allowable up to 65°C at 60% load for short term operation	
Storage temperature	-40 to +70°C	
Operating relative humidity	+5% to 95%, non-condensing	
Shipping and storage relative humidity	+5% to 95%, non-condensing	
Operating altitude	Up to 5,000 m	
Storage altitude	Up to 12,100 m	
Vibration and shock	Standard operating/non-operating random shock and vibration	
RoHS and REACH compliance	Yes	
MTBF	500 k hours (Telcordia SR-332 at 55°C ambient, nominal input, full load)	
Operating life	Minimum of 5 years at 55°C, 85% load, nominal input, sea level	

CONNECTOR DEFINITION

Output connector part number	Card-edge
Recommended mating connector part number	FCI Amphenol HPG12P14SRT153T*

 $[\]ensuremath{^*}$ Use with caution to maintain connector temperature rise and connector temperature.

Output Connector Pin Configuration			
A1-A9	POWER GND	Return path for current	
A10-18	+12V	Main output	
A19	SDA	I ² C data line	
A20	SCL	I ² C clock line	
A21	PSON#	Remote enable signal, pull low to turn on the main output	
A22	SMBAlert#	PSU fault interrupt	
A23	RETURN_SENSE	Remote sense for ground, 100 mV compensation	
A24	+12V_REMOTE_SENSE	100 mV drop compensation for the main output	
A25	PWOK	12 V main output status signal	
B1-B9	POWER GND	Return path for current	
B10-B18	+12V	Main output	
B19	A0 (addressing)	I ² C address bit	
B20	A1 (addressing)	I ² C address bit	
B21	12VSB	Standby output	
B22	CR_BUS	Cold redundancy bus signal	
B23	ISHARE	Current sharing bus signal	
B24	GND	Signal used for PSU presence detection	
B25	VIN_GOOD	PSU input status signal	

ADDRESSING

PMBUS				
A1	Α0	Adddress		
0	0	B0h		
0	1	B2h		
1	0	B4h		
1	1	B6h		

EEPROM FRU				
A1	A0	Adddress		
0	0	A0h		
0	1	A2h		
1	0	A4h		
1	1	A6h		

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2022 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.